Quiz 3 – Solutions

Dr. Samir Donmazov

1. Define (for now) a linear function $f: \mathbb{R} \to \mathbb{R}$ to be a function for which f(t) = mt for some constant m. Using only this definition, prove that for any linear function $f: \mathbb{R} \to \mathbb{R}$ and any real constants a, b, we have f(ax + by) = af(x) + bf(y) for all $x, y \in \mathbb{R}$.

Solution: By the given definition there exists $m \in \mathbb{R}$ such that f(t) = mt for all $t \in \mathbb{R}$. Then, for any $x, y, a, b \in \mathbb{R}$,

$$f(ax + by) = m(ax + by) = (ma)x + (mb)y = a(mx) + b(my) = af(x) + bf(y).$$

This uses only the distributive and associative properties of real numbers together with f(t) = mt.

- 2. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE and provide a counterexample.
 - (a) The solution set in \mathbb{R}^4 to three nontrivial linear equations in four unknowns can never be a line.

Solution: False. Three independent, consistent linear equations in four variables can have rank 3, so the solution space has dimension 4 - 3 = 1, i.e., a line.

Counterexample:

$$\begin{cases} x_1 = 0, \\ x_2 = 0, \\ x_3 = 0. \end{cases}$$
 (all nontrivial)

The solution set is $\{(0,0,0,t):t\in\mathbb{R}\}$, which is a line in \mathbb{R}^4 .

- (b) Suppose $m, n \in \mathbb{N}$, $\alpha \in \mathbb{R}$, and A, B are $n \times m$ matrices. Then
 - A + B is an $n \times m$ matrix, and
 - αB is an $n \times m$ matrix.

Solution: TRUE. Matrix addition and scalar multiplication are defined entrywise. If $A = [a_{ij}]$ and $B = [b_{ij}]$ are both $n \times m$, then $A + B = [a_{ij} + b_{ij}]$ is also $n \times m$, and $\alpha B = [\alpha b_{ij}]$ is $n \times m$.

1